JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app