JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Extinction can be estimated from moderately sized molecular phylogenies.

Hundreds of studies have been dedicated to estimating speciation and extinction from phylogenies of extant species. Although it has long been known that estimates of extinction rates using trees of extant organisms are often uncertain, an influential paper by Rabosky (2010) suggested that when birth rates vary continuously across the tree, estimates of the extinction fraction (i.e., extinction rate/speciation rate) will appear strongly bimodal, with a peak suggesting no extinction and a peak implying speciation and extinction rates are approaching equality. On the basis of these results, and the realistic nature of this form of rate variation, it is now generally assumed by many practitioners that extinction cannot be understood from molecular phylogenies alone. Here, we reevaluated and extended the analyses of Rabosky (2010) and come to the opposite conclusion-namely, that it is possible to estimate extinction from molecular phylogenies, even with model violations due to heritable variation in diversification rate. Note that while it may be tempting to interpret our study as advocating the application of simple birth-death models, our goal here is to show how a particular model violation does not necessitate the abandonment of an entire field: use prudent caution, but do not abandon all hope.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app