JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Understanding opioid reward.

Opioids are the most potent analgesics in clinical use; however, their powerful rewarding properties can lead to addiction. The scientific challenge is to retain analgesic potency while limiting the development of tolerance, dependence, and addiction. Both rewarding and analgesic actions of opioids depend upon actions at the mu opioid (MOP) receptor. Systemic opioid reward requires MOP receptor function in the midbrain ventral tegmental area (VTA) which contains dopaminergic neurons. VTA dopaminergic neurons are implicated in various aspects of reward including reward prediction error, working memory, and incentive salience. It is now clear that subsets of VTA neurons have different pharmacological properties and participate in separate circuits. The degree to which MOP receptor agonists act on different VTA circuits depends upon the behavioral state of the animal, which can be altered by manipulations such as food deprivation or prior exposure to MOP receptor agonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app