JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner.

The profitable insecticidal action of monoterpenoids prompted us to test their efficiency against stored-grain beetle species, via inhibition of acetylcholinesterase (AChE). For this, we first studied the ability of the monoterpenoids geraniol, linalool, camphor, fenchone, carvone and γ-terpinene, besides the phenylpropanoids trans-anethole and estragole to inhibit Electrophorus AChE. The results indicated that while AChE activity increased (15-35%) with 40 μM geraniol, camphor, γ-terpinene and linalool, the activity decreased (60-40%) with 5mM carvone, γ-terpinene, and fenchone. The Km for AChE was 0.52 ± 0.02 mM in control assays, which fell to 0.28 ± 0.01 mM or 0.32 ± 0.01 mM in assays with 20 μM linalool or γ-terpinene added. In the millimolar range, the terpenoids behaved as weak inhibitors. Unexpectedly, AChE inhibition by camphor, carvone, γ-terpinene, and fenchone gave Hill numbers ranging 2.04-1.57, supporting the idea that AChE was able to lodge more than one monoterpenoid molecule. The plots of 1/v vs. 1/S at varying monoterpenoid provided straight lines, fenchone and γ-terpinene acting as competitive inhibitors and carvone and camphor as non-competitive inhibitors. Moreover, the secondary plots of the slope KM(app)/Vmax(app) vs. [I] and of 1/Vmax(app) vs. [I] gave parabolic curves, which lent support to the proposed capacity of AChE to bind more than one monoterpenoid molecule. The fitting of the curves to a second-order polynomial equation allowed us to calculate the inhibition constants for the interaction of AChE with fenchone, γ-terpinene, carvone and camphor. The previously unnoticed increase in AChE activity with monoterpenoids should be considered as a reminder when advising the use of essential oils of plants or their constituents as anti-AChE agents to attenuate pathological signs of Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app