JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.

ACS Nano 2015 Februrary 25
We demonstrate theoretically that Fano resonance can induce a negative optical scattering force acting on plasmonic nanoparticles in the visible light spectrum when an appropriate manipulating laser beam is adopted. Under the illumination of a zeroth-order Bessel beam, the plasmonic nanoparticle at its Fano resonance exhibits a much stronger forward scattering than backward scattering and consequently leads to a net longitudinal backward optical scattering force, termed Fano resonance-induced negative optical scattering force. The extinction spectra obtained based on the Mie theory show that the Fano resonance arises from the interference of simultaneously excited multipoles, which can be either a broad electric dipole mode and a narrow electric quadrupole mode, or a quadrupole and an octupole mode mediated by the broad electric dipole. Such Fano resonance-induced negative optical scattering force is demonstrated to occur for core-shell, homogeneous, and hollow metallic particles and can therefore be expected to be universal for many other nanostructures exhibiting Fano resonance, adding considerably to the flexibility of optical micromanipulation on the plasmonic nanoparticles. More interestingly, the flexible tunability of the Fano resonance by particle morphology opens up the possibility of tailoring the optical scattering force accordingly, offering an additional degree of freedom to optical selection and sorting of plasmonic nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app