JOURNAL ARTICLE

Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation

Lee R Krumholz, Peter Bradstock, Cody S Sheik, Yiwei Diao, Ozcan Gazioglu, Yuri Gorby, Michael J McInerney
Applied and Environmental Microbiology 2015, 81 (7): 2339-48
25616787
In anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e., formate, hydrogen, or nanowires) and a partner producing methane or respiring the electrons via alternative electron accepting processes. Using a transposon gene mutant library of the sulfate-reducing Desulfovibrio alaskensis G20, we screened for mutants incapable of serving as the electron-accepting partner of the butyrate-oxidizing bacterium, Syntrophomonas wolfei. A total of 17 gene mutants of D. alaskensis were identified as incapable of serving as the electron-accepting partner. The genes identified predominantly fell into three categories: membrane surface assembly, flagellum-pilus synthesis, and energy metabolism. Among these genes required to serve as the electron-accepting partner, the glycosyltransferase, pilus assembly protein (tadC), and flagellar biosynthesis protein showed reduced biofilm formation, suggesting that each of these components is involved in cell-to-cell interactions. Energy metabolism genes encoded proteins primarily involved in H2 uptake and electron cycling, including a rhodanese-containing complex that is phylogenetically conserved among sulfate-reducing Deltaproteobacteria. Utilizing an mRNA sequencing approach, analysis of transcript abundance in wild-type axenic and cocultures confirmed that genes identified as important for serving as the electron-accepting partner were more highly expressed under syntrophic conditions. The results imply that sulfate-reducing microorganisms require flagellar and outer membrane components to effectively couple to their syntrophic partners; furthermore, H2 metabolism is essential for syntrophic growth of D. alaskensis G20.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
25616787
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"