Add like
Add dislike
Add to saved papers

Inhibition of P2Y6 receptor-mediated phospholipase C activation and Ca(2+) signalling by prostaglandin E2 in J774 murine macrophages.

Extracellular nucleotides act as inflammatory mediators through activation of multiple purinoceptors. Under inflammatory conditions, the purinergic signalling is affected by various inflammatory mediators. We previously showed that prostaglandin (PG) E2 suppressed the elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) stimulated by P2X4, P2Y2, and P2Y6 receptors in J774 murine macrophages. In this study, we examined the mechanism of PGE2 inhibitory effects on P2Y6 receptor-mediated function in J774 cells. The P2Y6 receptor agonist UDP induced a sustained elevation of [Ca(2+)]i by stimulating the phospholipase C (PLC) signalling pathway. PGE2 inhibited [Ca(2+)]i elevation and phosphatidylinositol (PI) hydrolysis in a concentration-dependent manner. J774 cells highly expressed the E-type prostanoid 2 (EP2) receptor subtype, a Gs-coupled receptor. PGE2 and a selective EP2 receptor agonist caused cyclic AMP (cAMP) accumulation in J774 cells. The inhibitory effects of PGE2 on P2Y6 receptor-mediated responses were mimicked by the selective EP2 receptor agonist. Although EP2 receptor is linked to adenylyl cyclase activation, PGE2-induced inhibition of Ca(2+) response and PI hydrolysis could not be mimicked by a lipophilic cAMP derivative, dibutyryl cAMP, or an adenylyl cyclase activator, forskolin. The inhibition of UDP-induced PLC activation by PGE2 was not affected by down-regulation of protein kinase C by phorbol-12-myristate-13-acetate treatment. PGE2 inhibited PLC activation induced by aluminium fluoride, but not by the Ca(2+)-ionophore, ionomycin. Finally, the inhibition of UDP-induced PLC activation by PGE2 was impaired by Gs knockdown using siRNA. These results suggest that EP2 receptor activation in macrophages negatively controls the Gq/11-PLC signalling through a Gs-mediated, but cAMP-independent signalling mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app