Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diurnal and stress-induced intra-hippocampal corticosterone rise attenuated in 11β-HSD1-deficient mice: a microdialysis study in young and aged mice.

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra-hippocampal corticosterone (CORT) levels upon Y-maze testing in aged wild-type than in 11β-HSD1(-/-) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β-HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra-hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild-type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra-hippocampal CORT levels was greatly diminished in 11β-HSD1(-/-) mice and there was no rise with ageing; basal intra-hippocampal CORT levels were similar to wild-type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra-hippocampal CORT levels in wild-type mice than in 11β-HSD1(-/-) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β-HSD1 activity contributes substantially to diurnal and stress-induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β-HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app