Add like
Add dislike
Add to saved papers

Electron microscopy in rat brain slices reveals rapid accumulation of Cisplatin on ribosomes and other cellular components only in glia.

Cisplatin is a widely used, effective anticancer drug. Its use, however, is associated with several side effects including nephrotoxicity and neurotoxicity. It is known that cisplatin is accumulated in cells by the organic cation transport system and reacts with nucleotides, damaging them, but the precise target of cisplatin-induced neurotoxicity remains obscure. Here we report direct visualization of cisplatin inside brain cells using in vivo "cisplatin staining," a technique that takes advantage of the high electron density of cisplatin, which contains platinum (atomic mass = 195). After applying 0.1% cisplatin to living brain slices for 30 min, we fixed the tissue and observed the accumulated cisplatin using electron microscopy. We found that cisplatin was localized mainly to ribosomes associated with endoplasmic reticulum (EPR) in glial cells and to the myelin sheath formed by oligodendrocytes around neuronal axons. Staining of nuclear DNA was moderate. Our in vivo "cisplatin staining" method validated that the main target of cisplatin is a direct attack on myelin and the RNA contained in ribosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app