Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia

Yujun Cai, David J Nagel, Qian Zhou, Katherine D Cygnar, Haiqing Zhao, Faqian Li, Xinchun Pi, Peter A Knight, Chen Yan
Circulation Research 2015 March 27, 116 (7): 1120-32

RATIONALE: Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, postangioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs).

OBJECTIVE: Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases.

METHODS AND RESULTS: We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. In addition, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF receptor β (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with low-density lipoprotein receptor-related protein-1 and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an low-density lipoprotein receptor-related protein-1-dependent manner. A transmembrane adenylyl cyclase cAMP-dependent protein kinase cascade modulated by PDE1C is critical in regulating PDGFRβ degradation.

CONCLUSIONS: These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome-dependent PDGFRβ protein degradation via low-density lipoprotein receptor-related protein-1.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"