JOURNAL ARTICLE

Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm

Jessica Amber Jennings, Daniel P Carpenter, Karen S Troxel, Karen E Beenken, Mark S Smeltzer, Harry S Courtney, Warren O Haggard
Clinical Orthopaedics and related Research 2015, 473 (7): 2270-82
25604874

BACKGROUND: Orthopaedic biomaterials are susceptible to biofilm formation. A novel lipid-based material has been developed that may be loaded with antibiotics and applied as an implant coating at point of care. However, this material has not been evaluated for antibiotic elution, biofilm inhibition, or in vivo efficacy.

QUESTIONS/PURPOSES: (1) Do antibiotic-loaded coatings inhibit biofilm formation? (2) Is the coating effective in preventing biofilm in vivo?

METHODS: Purified phosphatidylcholine was mixed with 25% amikacin or vancomycin or a combination of 12.5% of both. A 7-day elution study for coated titanium and stainless steel coupons was followed by turbidity and zone of inhibition assays against Staphylococcus aureus and Pseudomonas aeruginosa. Coupons were inoculated with bacteria and incubated 24 hours (N = 4 for each test group). Microscopic images of biofilm were obtained. After washing and vortexing, attached bacteria were counted. A mouse biofilm model was modified to include coated and uncoated stainless steel wires inserted into the lumens of catheters inoculated with a mixture of S aureus or P aeruginosa. Colony-forming unit counts (N = 10) and scanning electron microscopy imaging of implants were used to determine antimicrobial activity.

RESULTS: Active antibiotics with colony inhibition effects were eluted for up to 6 days. Antibiotic-loaded coatings inhibited biofilm formation on in vitro coupons (log-fold reductions of 4.3 ± 0.4 in S aureus and 3.1 ± 0 for P aeruginosa in phosphatidylcholine-only coatings, 5.6 ± 0 for S aureus and 3.1 ± 0 for P aeruginosa for combination-loaded coatings, 5.5 ± 0.3 for S aureus in vancomycin-loaded coatings, and 3.1 ± 0 for P aeruginosa for amikacin-loaded coatings (p < 0.001 for all comparisons of antibiotic-loaded coatings against uncoated controls for both bacterial strains, p < 0.001 for comparison of antibiotic-loaded coatings against phosphatidylcholine only for S aureus, p = 0.54 for comparison of vancomycin versus combination coating in S aureus, P = 0.99 for comparison of antibiotic- and unloaded phosphatidylcholine coatings in P aeruginosa). Similarly, antibiotic-loaded coatings reduced attachment of bacteria to wires in vivo (log-fold reduction of 2.54 ± 0; p < 0.001 for S aureus and 0.83 ± 0.3; p = 0.112 for P aeruginosa).

CONCLUSIONS: Coatings deliver active antibiotics locally to inhibit biofilm formation and bacterial growth in vivo. Future evaluations will include orthopaedic preclinical models to confirm therapeutic efficacy.

CLINICAL RELEVANCE: Clinical applications of local drug delivery coating could reduce the rate of implant-associated infections.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25604874
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"