JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Engineered adenoviruses combine enhanced oncolysis with improved virus production by mesenchymal stromal carrier cells.

Oncolytic viruses have demonstrated in pre-clinical and clinical studies safety and a unique pleiotropic activity profile of tumor destruction. Yet, their delivery suffers from virus inactivation by blood components and sequestration to healthy tissues. Therefore, mesenchymal stromal cells (MSCs) have been applied as carrier cells for shielded virus delivery to tumors after ex vivo infection with oncolytic viruses. However, infection and particle production by MSCs have remained unsatisfying. Here, we report engineered oncolytic adenoviruses (OAds) for improved virus production and delivery by MSCs. OAds are uniquely amenable to molecular engineering, which has facilitated improved tumor cell destruction. But for MSC-mediated regimens, OAd engineering needs to achieve efficient infection and replication in both MSCs and tumor cells. We show that an Ad5/3 chimeric OAd capsid, containing the adenovirus serotype 3 cell-binding domain, strongly increases the entry into human bone marrow-derived MSCs and into established and primary pancreatic cancer cells. Further, we reveal that OAd with engineered post-entry functions-by deletion of the anti-apoptotic viral gene E1B19K or expression of the death ligand TRAIL--markedly increased virus titers released from MSCs, while MSC migration was not hampered. Finally, these virus modifications, or viral expression of FCU1 for local 5-FC prodrug activation, improved tumor cell killing implementing complementary cytotoxicity profiles in a panel of pancreatic cancer cell cultures. Together, our study establishes post-entry modification of OAd replication for improving virus delivery by carrier cells and suggests a panel of optimized OAds for future clinical development in personalized treatment of pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app