Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms.

BACKGROUND: Accumulating evidence suggests that neuroinflammation plays an important role in the progression of Parkinson's disease (PD). Excessively activated microglia produce several pro-inflammatory enzymes and pro-inflammatory cytokines, leading to damage to surrounding neurons and eventually inducing neurodegeneration. Therefore, the inhibition of microglial overactivation may be a potential therapeutic strategy to prevent the further progression of PD. β-Hydroxybutyric acid (BHBA) has been shown to suppress lipopolysaccharide (LPS)-induced inflammation in BV-2 cells and to protect dopaminergic neurons in previous studies, but the underlying mechanisms remain unclear. Thus, in this study, we further investigated this mechanism in LPS-induced in vivo and in vitro PD models.

METHODS: For the in vitro experiments, primary mesencephalic neuron-glia cultures were pretreated with BHBA and stimulated with LPS. [(3)H]dopamine (DA) uptake, tyrosine hydroxylase-immunoreactive (TH-ir) neurons and morphological analysis were evaluated and analyzed in primary mesencephalic neuron-glia cultures. In vivo, microglial activation and the injury of dopaminergic neurons were induced by LPS intranigral injection, and the effects of BHBA treatment on microglial activation and the survival ratio and function of dopaminergic neurons were investigated. Four our in vitro mechanistic experiment, primary microglial cells were pretreated with BHBA and stimulated with LPS; the cells were then assessed for the responses of pro-inflammatory enzymes and pro-inflammatory cytokines, and the NF-κB signaling pathway was evaluated and analyzed.

RESULTS: We found that BHBA concentration-dependently attenuated the LPS-induced decrease in [(3)H]DA uptake and loss of TH-ir neurons in the primary mesencephalic neuron/glia mixed culture. BHBA treatment significantly improved the motor dysfunction of the PD model rats induced by intranigral injection of LPS, and this beneficial effect of BHBA was attributed to the inhibition of microglial overactivation and the protection of dopaminergic neurons in the substantia nigra (SN). Our in vitro mechanistic study revealed that the inhibitory effect of BHBA on microglia was mediated by G-protein-coupled receptor 109A (GPR109A) and involved the NF-κB signaling pathway, causing the inhibition of pro-inflammatory enzyme (iNOS and COX-2) and pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) production.

CONCLUSIONS: In conclusion, the present study supports the effectiveness of BHBA in protecting dopaminergic neurons against inflammatory challenge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app