Add like
Add dislike
Add to saved papers

Achilles tendons in people with type 2 diabetes show mildly compromised structure: an ultrasound tissue characterisation study.

BACKGROUND: Musculotendinous overuse injuries are prevalent in people with type 2 diabetes. Non-enzymatic glycosylation of collagen resulting in tendon stiffening may play a role. In this case-control study we determined whether patients with diabetes had poorer ultrasonographic structure in their Achilles tendons compared to age-matched controls.

METHODS: People with type 1 diabetes or type 2 diabetes, and age-matched controls, had computerised ultrasound tissue characterisation of both Achilles tendons. In contiguous ultrasonographic images of the tendon, echopatterns were quantified and categorised into four echo-types. Tendon abnormality was quantified as sum of echo-types III+IV. Furthermore, skin autofluorescence (AF) of the forearm (AF-value) was gathered.

RESULTS: Twenty four type 2 diabetes patients, 24 controls, 24 type 1 diabetes patients and 20 controls were included. AF-value was higher in type 1 diabetes (1.55±0.17) than in their controls (1.39±0.18, p<0.001) and in type 2 diabetes (2.28±0.38) compared to their controls (1.84±0.32, p<0.001) Achilles tendons of type 2 diabetes patients contained more echo-types III+IV (14.1±7.9%) than matched controls (8.0±5.4%, p<0.001). There was a trend towards a difference in echo-types III+IV between type 1 diabetes patients (9.5±5.3%) and their controls (6.5±3.7%, p=0.055). In a stepwise linear regression analysis, body mass index (BMI) was moderately associated with tendon abnormality in patients with diabetes and controls (β=0.393, p<0.001).

CONCLUSIONS: Type 2, and possibly type 1, diabetes patients showed poorer ultrasonographic Achilles tendon structure that may be a risk factor for tendinopathy. Although markers for accumulation of advanced glycation end products were elevated in both diabetes populations, only BMI was associated with these abnormalities.

TRIAL REGISTRATION NUMBER: NTR2209.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app