Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types.

The aim of the paper was to determine the stability and the decomposition intensity of selected polycyclic aromatic hydrocarbons (fluorene, anthracene, pyrene, and chrysene) in soils that are under agricultural use. Soil was sampled from the arable layer that is representative of the Kujawy and Pomorze Provinces, which are located in the northwestern part of Poland. The soil samples were polluted with selected PAHs at an amount corresponding to 10 mg PAHs/kg. PAH-polluted soil samples were incubated for 10, 30, 60, 120, 180, and 360 days at a temperature of 20-25 °C and a fixed moisture of 50% field water capacity. High-performance liquid chromatography (HPLC) was used to determine the content of PAHs. It was found that the process of the degradation of PAHs was most intensive during the first 30 days of the experiment; however, three-ring PAHs (fluorene and anthracene) definitely decomposed faster than the four-ring ones (pyrene and chrysene). The results also confirm the significant role of soil organic matter in sorption and activation processes of PAHs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app