JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light.

ACS Nano 2015 Februrary 25
To integrate photodynamic therapy (PDT) with photothermal therapy (PTT) and chemotherapy for enhanced antitumor efficiency, we developed a mild and rational route to synthesize novel multifunctional GdOF:Ln@SiO2 (Ln = 10%Yb/1%Er/4%Mn) mesoporous capsules using strong up-conversion luminescent (UCL) GdOF:Ln as cores and mesoporous silica layer as shells, followed by modification with varied functional groups onto the framework. It was found that due to the codoped Yb/Er/Mn in GdOF, the markedly enhanced red emission can efficiently transfer energy to the conjugated PDT agent (ZnPc) which produces high singlet oxygen, and the incorporated carbon dots outside the shell can generate obvious thermal effect under 980 nm laser irradiation and also prevent the premature leaking of ZnPc. Simultaneously, the as-produced thermal effect can obviously enhance the doxorubicin (DOX) release, which greatly improves the chemotherapy, resulting in a synergistic therapeutic effect. The system exhibits drastically enhanced therapeutic efficiency against tumor growth, as demonstrated both in vitro and in vivo. Especially, the doped rare earth ions in the host endow the material with excellent UCL imaging, magnetic resonance imaging (MRI), and computed tomography (CT) imaging properties, thus realizing the target of multimodal imaging guided multiple therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app