Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains.

Water-soluble superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in the mixture of poly(ethylene glycol) (PEG) and poly(ethylene imine) (PEI). The average sizes of the SPIONs are in the range of 6-12nm, which could be tuned by adjusting the synthesis temperature and molecular weight of PEI. Benefiting from the coating of hydrophilic PEG and PEI, the resulted SPIONs showed excellent colloidal stability in deionized water and other physiological buffers. The XRD patterns indicate that the obtained SPIONs are magnetite. The PEG/PEI-SPIONs exhibited high r2/r1 ratio. In vivo magnetic resonance imaging (MRI) of the mouse brains after intravenous injection of the SPIONs showed their good contrast effect. Considering the facile fabrication process and excellent imaging performance of the water soluble PEG-SPIONs and PEG/PEI-SPIONs, it is believed that the SPIONs will find great potential in advanced MRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app