JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Key points to consider when studying RNA remodeling by proteins.

Cellular RNAs depend on proteins for efficient folding to specific functional structures and for transitions between functional structures. This dependence arises from intrinsic properties of RNA structure. Specifically, RNAs possess stable local structure, largely in the form of helices, and they have abundant opportunities to form alternative helices and tertiary contacts and therefore to populate alternative structures. Proteins with RNA chaperone activity, either ATP-dependent or ATP-independent, can promote structural transitions by interacting with single-stranded RNA (ssRNA) to compete away partner interactions and then release ssRNA so that it can form new interactions. In this chapter we review the basic properties of RNA and the proteins that function as chaperones and remodelers. We then use these properties as a foundation to explore key points for the design and interpretation of experiments that probe RNA rearrangements and their acceleration by proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app