Your institution is subscribed to Read Institutional Edition. Log in or Sign Up to read full text articles.

JOURNAL ARTICLE

Α‑lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats

Houliang Deng, Xialin Zuo, Jingjing Zhang, Xiaoxia Liu, Li Liu, Qian Xu, Zhuomin Wu, Aimin Ji
Molecular Medicine Reports 2015, 11 (5): 3659-65
25572614
It is well established that the brain is sensitive to ischemia/reperfusion (I/R)‑induced injury. α‑lipoic acid (LA), a free radical scavenger and antioxidant, has a neuroprotective effect against cerebral I/R‑induced injury, however, the underlying mechanisms remain to be elucidated. Therefore, the present study was undertaken to evaluate whether LA was able to protect against cerebral I/R‑induced injury and to examine the potential mechanisms. The neuroprotective effects of LA were investigated in a rat model of transient focal ischemia induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. Adult male Sprague‑Dawley rats were randomly assigned into the sham, cerebral I/R injury model and model plus LA groups. Cerebral I/R injury was induced by 90 min MCAO followed by reperfusion for 24 h. Cerebral infarct size was detected by 2,3,5‑triphenyltetrazolium chloride staining. Neurological deficit score (NDS), brain water content and oxidative parameters, including malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (T‑AOC) and superoxide dismutase (SOD) were measured. The expression of cleaved caspase‑3, brain‑derived neurotrophic factor (BDNF), phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K), p‑Akt and phosphorylated extracellular signal‑regulated kinase 1/2 (p‑ERK1/2) were also analyzed using western blotting. The present study demonstrated that pretreatment with LA significantly decreased the infarction size, brain water content and improved NDS. LA reversed the levels of oxidative parameters, including MDA, NO, T‑AOC and SOD to their normal state in rat brains following cerebral I/R. Furthermore, the expression of cleaved caspase‑3 markedly decreased and the expression of BDNF, PI3K, p‑Akt and p‑ERK1/2 significantly increased following administration of LA. On the basis of these findings, it was concluded that LA protected the brain from cerebral I/R damage by attenuation of oxidative stress and caspase‑dependent apoptosis. Furthermore, LA exerts its neuroprotective effects potentially through activation of the BDNF‑PI3K/Akt‑ERK1/2 pathway.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25572614
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.