JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Can transcranial direct current stimulation enhance performance of myoelectric control for multifunctional prosthesis?

Pattern recognition based myoelectric control has been studied by many researchers. However, the classification accuracy was pretty low for amputees towards multifunctional prosthesis control in practice. In this work, a novel method of transcranial direct current stimulation (tDCS) which can modulate brain activity was used to enhance performance for myoelectric prosthesis control. The pilot study was conducted on three able-bodied subjects and one transradial amputee. Surface electromyography (EMG) signals were acquired from both arms when performing eleven hand and wrist motions in pre-tDCS and post-tDCS sessions. Time domain (TD) features and linear discriminant analysis (LDA) classifier were adopted to process EMG. For the non-dominant hand of the healthy subjects, active anodal tDCS of the contralateral primary motor cortex was able to significantly improve average classification accuracy by 3.82% (p <; 0.05), while sham tDCS could not have such effect (p > 0.05). For amputated (phantom) hand of the amputee, active anodal tDCS was able to significantly improve average classification accuracy by 12.56%, while sham tDCS could not have such effect. For the dominant hand and intact hand, the average classification accuracies were stable and not significantly improved using either active tDCS or sham tDCS. The results show that tDCS is a powerful noninvasive method to modulate brain function and enhance EMG classification performance especially for the amputated hand towards multifunctional prosthesis control. The method proposed has a huge potential to promote EMG pattern recognition based control scheme to clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app