JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

User-driven control increases cortical activity during treadmill walking: an EEG study.

Treadmills provide a safe and efficient method for gait rehabilitation but treadmill based training paradigms have not been shown to create superior results when compared with traditional physical therapy methods such as overground training. One explanation for this may be that walking at a constant, fixed speed requires little mental engagement from the user, which has been postulated as a key factor in the success of motor learning. To increase mental engagement, we developed a user-driven treadmill control scheme. In this paper we use electroencephalography (EEG) to compare cortical activity during user-driven (active) walking with activity on a normal (passive) treadmill in nine healthy subjects. We used independent component analysis (ICA) to isolate brain activity from artifactual components. We fit equivalent dipole sources to each brain component and clustered these across subjects. Our analysis revealed that relative to the passive treadmill, active walking resulted in statistically significant decreases in spectral power, i.e. desynchronization, in the anterior cingulate, sensorimotor cortices, and posterior parietal lobe of the cortex. These results indicate that user-driven treadmills more fully engage the motor cortex and therefore could facilitate better training outcomes than a traditional treadmill.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app