Native and structurally modified gum arabic: exploring the effect of the gum's microstructure in obtaining electroactive nanoparticles

Patricia A Cornelsen, Ronaldo C Quintanilha, Marcio Vidotti, Philip A J Gorin, Fernanda F Simas-Tosin, Izabel C Riegel-Vidotti
Carbohydrate Polymers 2015 March 30, 119: 35-43
Electroactive nanoparticles combining gum arabic (GA) and polyaniline (PANI) were prepared by chemical synthesis. The gum consists of highly branched anionic polysaccharides with some protein content. GA was structurally modified by Smith controlled degradation, in order to reduce its degree of branching (GAD), aiming the elucidation of the relationship between the structure and the properties of complex polysaccharides. The modification was studied by SEC, GC-MS, (13)C NMR and colorimetric methods. GAD has lower molecular mass, lower degree of branching and lower uronic acid content. Besides it is enriched in galactose and protein when compared with GA. The obtained composites (GA-PANI and GAD-PANI) were thoroughly characterized. Although the use of both polysaccharides (GA and GAD) produced highly stable electroactive nanoparticles, the best combination of properties was achieved for GA-PANI. The sample GAD was not able to prevent the occurrence of crosslinking between PANI chains, possibly due to its lower microstructural complexity which diminishes the occurrence of hydrogen bonds between the polymers.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"