Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PKCδ-iPLA2-PGE2-PPARγ signaling cascade mediates TNF-α induced Claudin 1 expression in human lung carcinoma cells.

Claudin 1 (CLDN1) is a critical component of tight junction adhesion complexes that maintains the structural integrity of epithelial cell layers. Dysregulation of CLDN1 is associated with the growth and metastasis of human lung adenocarcinoma. TNF-α treatment was previously shown to increase expression of CLDN1 that mediated lung cancer cell morphology changes and migration. This study aimed to elucidate the molecular mechanisms involved in TNF-α induced CLDN1 expression in human lung carcinoma A549 cells. Chemical inhibition or siRNA downregulation of Src, PI3K, Akt, MAPKs, NFκB, caspase and PKC demonstrated that PKC, specifically PKCδ, is required for TNF-α induced CLDN1 expression. Further investigation of the PKC pathway revealed that CLDN1 expression is enhanced by the downstream molecules iPLA2, PGE2, 15-keto PGE2 and PPARγ. Conversely, inhibition of these molecules decreased CLDN1 expression. Additionally, a wound-healing assay demonstrated that TNF-α stimulation, PKC activation, prostaglandin treatment or PPARγ activation enhanced cell migration. In conclusion, TNF-α induced CLDN1 expression is regulated by the PKCδ-iPLA2-PGE2-PPARγ signaling cascade in human lung carcinoma A549 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app