Add like
Add dislike
Add to saved papers

Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method.

C3N4/TiO2 hybrid photocatalysts with highly enhanced photocatalytic performance were prepared by a facile ball milling method. A layered structure of g-C3N4 was formed on the surface of TiO2. The mechanochemical process can promote the dispersion of C3N4 on the surface of TiO2 particles, to form a single layer hybrid structure and a multi-layer core-shell structure. The photocatalytic activities of C3N4/TiO2 under visible and UV light irradiation were 3.0 and 1.3 times those of pure g-C3N4 and TiO2, respectively. Under visible light and UV irradiation, the photocurrent response was up to 2.5 times and 1.5 times as high as that of the pure TiO2 and C3N4, respectively. The evident performance enhancement of g-C3N4-TiO2 was mainly attributed to high separation and migration efficiency of electron-hole pairs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app