Add like
Add dislike
Add to saved papers

Synthesis of iron oxide rods coated with polymer brushes and control of their assembly in thin films.

We investigated the surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate (MMA) using monodisperse rod-type particles of iron oxide, β-FeOOH. The slow hydrolysis of iron(III) chloride yielded monodisperse β-FeOOH rods with an average length-to-width ratio, L/W, of 6 (L = 210 nm and W = 35 nm on average). The surfaces of the β-FeOOH rods were modified with a triethoxysilane derivative as an ATRP-initiating site, namely, (2-bromo-2-methyl)propionyloxypropyl triethoxysilane. The SI-ATRP of MMA, mediated by a copper complex, was performed using the initiator-coated β-FeOOH rods in the presence of a "sacrificial" free initiator. Well-defined poly(methyl methacrylate) (PMMA) brushes with molecular weights of up to 700,000 could be grafted on the β-FeOOH rods with a surface density as high as 0.3 chains/nm(2). The resultant polymer-brush-afforded hybrid rods exhibited high dispersibility in various solvents for PMMA without forming aggregates. Thin films were prepared by dip-coating from a suspension of the hybrid rods, and the rods were oriented in a specific direction in the films. The arrangement of the rods could be controlled by varying the chain length of the polymer brush and the withdrawal speed during the dip-coating process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app