Add like
Add dislike
Add to saved papers

Single crystal-to-single crystal site-selective postsynthetic metal exchange in a Zn-MOF based on semi-rigid tricarboxylic acid and access to bimetallic MOFs.

The metal ions in a neutral Zn-MOF constructed from tritopic triacid H3 L with inherent concave features, rigid core, and peripheral flexibility are found to exist in two distinct SBUs, that is, 0D and 1D. This has allowed site-selective postsynthetic metal exchange (PSME) to be investigated and reactivities of the metal ions in two different environments in coordination polymers to be contrasted for the first time. Site-selective transmetalation of Zn ions in the discrete environment is shown to occur in a single crystal-to-single crystal (SCSC) fashion, with metal ions such as Fe(3+) , Ru(3+) , Cu(2+) , Co(2+) , etc., whereas those that are part of 1D SBU sustain structural integrity, leading to novel bimetallic MOFs, which are inaccessible by conventional approaches. To the best of our knowledge, site-selective postsynthetic exchange of an intraframework metal ion in a MOF that contains metal ions in discrete as well as polymeric SBUs is heretofore unprecedented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app