Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer.

Oncogene 2015 September 11
STIM1 (stromal interaction molecule 1), an endoplasmic reticulum Ca(2+) sensor that triggers the store-operated Ca(2+) entry activation, has recently been implicated in cancer progression. However, the role of STIM1 in the progression and metastasis of colorectal cancer (CRC) has not been addressed. In this study, we confirmed increased expression of STIM1 in highly invasive CRC cell lines. Enhanced expression of STIM1 promoted CRC cell metastasis in vitro and in vivo, whereas silencing of STIM1 with small interfering RNA resulted in reduced metastasis. Ectopic expression of STIM1 in CRC cells induced epithelial-to-mesenchymal transition (EMT), whereas silencing of STIM1 had the opposite effect. Furthermore, STIM1 expression was markedly higher in CRC tissues than in adjacent noncancerous tissues. STIM1 overexpression correlated with poor differentiation and higher tumor node metastasis stage. CRC patients with positive STIM1 expression had poorer prognoses than those with negative STIM1 expression. Moreover, STIM1 was found to be a direct target of miR-185, a microRNA (miRNA) that has not previously been reported to be involved in EMT, in both CRC tissues and cell lines. Taken together, these findings demonstrate for the first time that STIM1 promotes metastasis and is associated with cancer progression and poor prognosis in patients with CRC. In addition, we show that expression of STIM1 is regulated by a posttranscriptional regulatory mechanism mediated by a new EMT-related miRNA. This novel miR-185-STIM1 axis promotes CRC metastasis and may be a candidate biomarker for prognosis and a target for new therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app