JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α.

Hypoxia is a common feature of solid tumors and an important contributor to anti-tumor drug resistance. Hypoxia inducible factor-1 (HIF-1) is one of the key mediators of the hypoxia signaling pathway, and was recently proven to be required for sorafenib resistance in hepatocarcinoma (HCC). MicroRNAs have emerged as important posttranslational regulators in HCC. It was reported that miR-338-3p levels are associated with clinical aggressiveness of HCC. However, the roles of miR-338-3p in HCC disease and resistance to its therapeutic drugs are unknown. In this study, we found that miR-338-3p was frequently down-regulated in 14 HCC clinical samples and five cell lines. Overexpression of miR-338-3p inhibited HIF-1α 3'-UTR luciferase activity and HIF-1α protein levels in HepG2, SMMC-7721, and Huh7 cells. miR-338-3p significantly reduced cell viability and induced cell apoptosis of HCC cells. Additionally, HIF-1α overexpression rescued and HIF-1α knock-down abrogated the anti-HCC activity of miR-338-3p. Furthermore, miR-338-3p sensitized HCC cells to sorafenib in vitro and in a HCC subcutaneous nude mice tumor model by inhibiting HIF-1α. Collectively, miR-338-3p inhibits HCC tumor growth and sensitizes HCC cells to sorafenib by down-regulating HIF-1α. Our data indicate that miR-338-3p could be a potential candidate for HCC therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app