JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Hypoxia activation of mitophagy and its role in disease pathogenesis.

SIGNIFICANCE: Mitochondria utilize most of the oxygen to produce adenosine triphosphate via electron transfer coupled with oxidative phosphorylation. Hypoxia undoubtedly induces reduced energy production via decreased mitochondrial metabolic activity or altered hypoxia-inducible factor-1- and peroxisome proliferator-activated receptor gamma coactivator 1-dependent mitochondrial biogenesis. Hypoxia may also activate mitophagy to selectively remove damaged or unwanted mitochondria for both mitochondrial quantity and quality control. Increasing evidence has shown that the accumulation of damaged mitochondria is a characteristic of aging and aging-related diseases, such as metabolic disorder, cancer, and neurodegenerative disease.

RECENT ADVANCES: Both receptor-dependent and PTEN-induced putative kinase 1-PARKIN-dependent mitophagy have been described. Mitophagy receptors include Atg32 in yeast, as well as NIX/BNIP3L, B-cell lymphoma 2/adenovirus E1B 19-kDa-interacting protein 3 and FUN14 domain containing 1 in mammals. In response to hypoxia or mitochondrial oxidative stress, receptor-mediated mitophagy was found to be activated via both transcriptional and post-translational modification.

CRITICAL ISSUES: To date, the molecular mechanisms by which hypoxia triggers mitophagy and by which mitophagy contributes to the pathogenesis of aging-related diseases remain to be explored.

FUTURE DIRECTIONS: An improved understanding of the regulation of mitochondrial quality may provide a strategy for treating aging-related diseases by targeting mitochondria and mitophagy pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app