JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Non-antigen-contacting region of an asymmetric bispecific antibody to factors IXa/X significantly affects factor VIII-mimetic activity.

MAbs 2015
While antibody engineering improves the properties of therapeutic antibodies, optimization of regions that do not contact antigens has been mainly focused on modifying the effector functions and pharmacokinetics of antibodies. We recently reported an asymmetric anti-FIXa/FX bispecific IgG4 antibody, ACE910, which mimics the cofactor function of FVIII by placing the two factors into spatial proximity for the treatment of hemophilia A. During the optimization process, we found that the activity was significantly affected by IgG subclass and by modifications to the inter-chain disulfide bonds, upper hinge region, elbow hinge region, and Fc glycan, even though these regions were unlikely to come into direct contact with the antigens. Of these non-antigen-contacting regions, the tertiary structure determined by the inter-chain disulfide bonds was found to strongly affect the FVIII-mimetic activity. Interestingly, IgG4-like disulfide bonds between Cys131 in the heavy chain and Cys114 in the light chain, and disulfide bonds between the two heavy chains at the hinge region were indispensable for the high FVIII-mimetic activity. Moreover, proline mutations in the upper hinge region and removal of the Fc glycan enhanced the FVIII-mimetic activity, suggesting that flexibility of the upper hinge region and the Fc portion structure are important for the FVIII-mimetic activity. This study suggests that these non-antigen-contacting regions can be engineered to improve the biological activity of IgG antibodies with functions similar to ACE910, such as placing two antigens into spatial proximity, retargeting effector cells to target cells, or co-ligating two identical or different antigens on the same cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app