Add like
Add dislike
Add to saved papers

Incomplete epithelial-mesenchymal transition in p16-positive squamous cell carcinoma cells correlates with β-catenin expression.

Anticancer Research 2014 December
BACKGROUND: The epithelial-mesenchymal transition (EMT) is suggested to be a crucial factor for the development of an invasive and metastatic cell phenotype, which is characterized by down-regulation of epithelial adhesive proteins (e.g. E-cadherin) and induction of mesenchymal proteins (e.g. vimentin). Therefore, there is a great clinical interest to specify this phenotype. Different growth factors induce EMT, such as epithelial growth factor (EGF) and transforming growth factor beta 1 (TGFβ1). The role of EMT in human papilloma virus (HPV)-positive squamous cell carcinoma (SCC) is still not understood. The aim of this study was to investigate the expression pattern in p16-positive and -negative SCC cells of vimentin, β-catenin and E-cadherin after stimulation with growth factors.

MATERIALS AND METHODS: We incubated the p16-positive CERV196 and p16-negative HNSCC22B SCC cell lines with EGF and EGF/TGFβ1 (10 ng/ml) and detected E-cadherin, vimentin and β-catenin by immunocytochemistry and enzyme-linked immunosorbent assay after 5, 24 and 96 h.

RESULTS: We found a low expression of vimentin in all studied tumor cell lines. The negative control of HNSCC22B cells showed a higher intrinsic level of membranous E-cadherin and β-catenin. We found statistically significant EGF/TGFβ1-induced expression of vimentin dependent on incubation time in p16-negative HNSCC22B cells. Particularly in the presence of EGF, we detected an increase of β-catenin and vimentin expression in p16-positive SCC tumor cell lines in addition to induced cell scattering and unexpected expression of E-cadherin.

CONCLUSION: In conclusion, E-cadherin, β-catenin and vimentin expression are important features to characterize EMT-like events. We were able to show incomplete EGF-induced EMT with β-catenin expression in p16-positive SCC. Extended studies are required to investigate the mechanistic role of EMT markers, especially in p16-positive SCC, in order to develop new anti-SCC therapies to block EMT progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app