Irinophore C™, a lipid nanoparticulate formulation of irinotecan, improves vascular function, increases the delivery of sequentially administered 5-FU in HT-29 tumors, and controls tumor growth in patient derived xenografts of colon cancer

Robert Neijzen, May Q Wong, Navdeep Gill, He Wang, Tamanna Karim, Malathi Anantha, Dita Strutt, Dawn Waterhouse, Marcel B Bally, Isabella T Tai, Sylvia S W Ng, Donald T Yapp
Journal of Controlled Release 2015 February 10, 199: 72-83

PURPOSE: A liposomal formulation of irinotecan, Irinophore C™ (IrC™) is efficacious in a panel of tumor models, normalizes tumor vasculature, and increases the accumulation of a second drug in the same tumor. We now show that Irinophore C™ is also effective against patient derived xenografts (PDX) of colon cancer, and examine the kinetics of vascular normalization in the HT-29 tumor model and assess how these changes might be used with 5-FU sequentially.

MATERIALS AND METHODS: Rag2M mice bearing HT-29 tumors were treated with IrC™ (25mg/kg; Q7D×3) for up to three weeks. Groups of tumors were harvested for analysis at 7, 14 and 21days after the start of treatment. Drug and lipid levels in the tumor were evaluated using HPLC and scintillation counts, respectively. Changes in tumor morphology (H&E), vasculature (CD31), perfusion (Hoechst 33342) and apoptosis (TUNEL) were quantified using microscopy. The accumulation of a second drug ([(14)C]-5-FU, 40mg/kg) given 3h before sacrifice was determined using liquid scintillation. The efficacy of IrC™ (Q7D×3) followed by 5-FU treatment (Q7D×3) was assessed in mice bearing established HT-29 tumors. The efficacy of IrC™ was also evaluated in primary human colorectal tumors grown orthotopically in NOD-SCID mice.

RESULTS: Following a single dose of IrC™ the active lactone forms of irinotecan and its metabolite SN-38 were measurable in HT-29 tumors after 7days. The treatment reduced tumor cell density and increased apoptosis. Hoechst 33342 perfusion and accumulation of [(14)C]-5-FU in the treated tumors increased significantly on days 7 and 14. This was accompanied by an increase in the number of endothelial cells relative to total nuclei in the tumor sections. Pre-treatment with IrC™ (Q7D×3) followed by 5-FU (Q7D×3) delayed the time taken for tumors to reach 1cm(3) by 9days (p<0.05). IrC™ was just as effective as free irinotecan when used on patient derived xenografts of colorectal cancer.

CONCLUSIONS: Treatment with IrC™ reduces tumor cell viability and appears to normalize the vascular function of the tumor after a single treatment cycle. A concomitant increase in the accumulation of a second drug (5-FU) in the tumor was observed in tumors from IrC™ treated animals and this was correlated with changes in vascular structure consistent with normalization. The treatment effects of sequential 5-FU dosing following IrC™ are additive with no additional toxicity in contrast to previous studies where concurrent 5-FU and IrC™ treatment exacerbated 5-FU toxicity. The studies with PDX tumors also indicate that IrC™ is just as effective as free irinotecan on PDX tumors even though the delivered dose is halved.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"