Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Advanced treatment of landfill leachate using anaerobic-aerobic process: organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite.

Bioresource Technology 2015 Februrary
A novel biological system coupling an UASB and a SBR was established to treat landfill leachate. In order to enhance organics and nitrogen removal, simultaneous denitritation and methanogenesis (SDM) was performed in the UASB. Free ammonia (FA) inhibition on nitrite-oxidizing bacteria (NOB) and process control was used to achieve nitrite pathway in the SBR. Results over 623 days showed that the maximum organic removal rate in the UASB and the maximum ammonium oxidization rate in the SBR was 12.7 kgCOD/m(3) d and 0.96 kgN/m(3) d, respectively. The system achieved COD, TN, and NH4(+)-N removal efficiencies of 93.5%, 99.5%, and 99.1%, respectively. By using FA inhibition coupled with process control, the nitrite pathway was started-up in the SBR at low temperatures (14.0-18.2°C) and was maintained for 142 days at temperatures below 15°C (the lowest level was 9.0°C). The predominant ammonia-oxidizing bacteria (AOB) explains essentially stable nitritation obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app