Add like
Add dislike
Add to saved papers

Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity.

Drug Delivery 2016 May
To overcome multidrug resistance (MDR) in cancer chemotherapy with high efficiency and safety, a reduction-sensitive liposome (CL-R8-LP), which was co-modified with reduction-sensitive cleavable PEG and octaarginine (R8) to increase the tumor accumulation, cellular uptake and lysosome escape, was applied to co-encapsulate doxorubicin (DOX) and a P-glycoprotein (P-gp) inhibitor of verapamil (VER) in this study. The encapsulation efficiency (EE) of DOX and VER in the binary-drug loaded CL-R8-LP (DOX + VER) was about 95 and 70% (w/w), respectively. The uptake efficiencies, the cytotoxicity, and the apoptosis and necrosis-inducing efficiency of CL-R8-LP (DOX + VER) were much higher than those of DOX and the other control liposomes in MCF-7/ADR cells or tumor spheroids. Besides, CL-R8-LP (DOX + VER) was proven to be uptaken into MCF-7/ADR cells by clathrin-mediated and macropinocytosis-mediated endocytosis, followed by efficient lysosomal escape. In vivo, CL-R8-LP (DOX + VER) effectively inhibited the growth of MCF-7/ADR tumor and reduce the toxicity of DOX and VER, which could be ascribed to increased accumulation of drugs in drug-resistant tumor cells and reduced distribution in normal tissues. In summary, the co-delivery of chemotherapeutics and P-gp inhibitors by our reduction-sensitive liposome was a promising approach to overcome MDR, improve anti-tumor effect and reduce the toxicity of chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app