Engineering better immunotherapies via RNA interference

Mouldy Sioud
Human Vaccines & Immunotherapeutics 2014, 10 (11): 3165-74
The therapeutic potential of dendritic cell (DC) cancer vaccines has gained momentum in recent years. However, clinical data indicate that antitumor immune responses generally fail to translate into measurable tumor regression. This has been ascribed to a variety of tolerance mechanisms, one of which is the expression of immunosuppressive factors by DCs and T cells. With respect to cancer immunotherapies, these factors antagonise the ability to induce robust and sustained immunity required for tumor cell eradication. Gene silencing of immunosuppressive factors in either DCs or adoptive transferred T cells enhanced anti-tumor immune responses and significantly inhibited tumor growth. Therefore, engineered next generation of DC vaccines or adoptive T-cell therapy should include immunomodulatory siRNAs to release the "brakes" imposed by the immune system. Moreover, the combination of gene silencing, antigen targeting to DCs and cytoplasmic cargo delivery will improve clinical benefits.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"