Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Upregulation of miR-494 Inhibits Cell Growth and Invasion and Induces Cell Apoptosis by Targeting Cleft Lip and Palate Transmembrane 1-Like in Esophageal Squamous Cell Carcinoma.

BACKGROUND: Potential target genes of microRNA (miR)-494 have been reported in many types of cancers. However, the role of miR-494 in esophageal squamous cell carcinoma (ESCC) remains unknown.

AIM: This study focused on the expression and biological function of miR-494 in ESCC.

METHODS: Using bioinformatics analyses, we found that cleft lip and palate transmembrane 1-like (CLPTM1L) was a potential target of miR-494. We performed quantitative real-time (qRT) PCR assays in 37 ESCC tumor tissues to determine the expression of miR-494 and CLPTM1L mRNA, and we analyzed the correlation between both of these factors and clinical characteristics. The cell counting kit-8 and colony formation assays were used to evaluate the effects of miR-494 expression on the proliferation of ESCC cells. The transwell migration assay and flow cytometric apoptosis assay were performed to study the influence of miR-494 on the invasion and apoptosis of ESCC cells. Western blotting, luciferase assays, and CLPTM1L knockdown experiments were used to determine whether CLPTM1L was a target of miR-494.

RESULTS: The qRT-PCR assays showed significant downregulation of miR-494 (P < 0.05) and upregulation of CLPTM1L mRNA (P < 0.05), both of which were significantly associated with lymph node metastases (P < 0.05). High expression of miR-494 inhibited cell proliferation and invasion and promoted cell apoptosis (P < 0.05). The results also showed that CLPTM1L was a target of miR-494.

CONCLUSION: These results show that the expression of miR-494, which can regulate cell growth, invasion and apoptosis of ESCC cells by targeting CLPTM1L, is downregulated in ESCC tumor tissues. The miR-494-CLPTM1L pathway could be further exploited to develop a new approach to treat ESCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app