Add like
Add dislike
Add to saved papers

In vivo occupancy of the 5-HT1A receptor by a novel pan 5-HT1(A/B/D) receptor antagonist, GSK588045, using positron emission tomography.

5-hydroxytryptamine 1 (5-HT1) receptor blockade in combination with serotonin reuptake inhibition may provide a more rapid elevation of synaptic 5-HT compared to serotonin reuptake alone, by blocking the inhibitory effect of 5-HT1 receptor activation on serotonin release. GSK588045 is a novel compound with antagonist activity at 5-HT1A/1B/1D receptors and nanomolar affinity for the serotonin transporter, which was in development for the treatment of depression and anxiety. Here we present the results of an in vivo assessment of the relationship between plasma exposure and 5-HT1A receptor occupancy. Six Cynomolgus monkeys (Macaca fascicularis) were scanned using the PET ligand [(11)C]WAY100635 before and after dosing with GSK588045 (0.03, 0.1 and 0.3 mg/kg 60 min i.v. infusion). Data was quantified using a simplified reference tissue model, with the cerebellar time-activity curve used as an input function. Plasma levels of GSK588045 were measured, and the EC50 of GSK588045 for 5-HT1A receptor occupancy was estimated. An Emax model described the relationship between the GSK588045 plasma concentration and 5-HT1A receptor occupancy data well. EC50 estimates (and 95% confidence intervals) for raphe nuclei and the frontal cortex were 6.99 (2.48 to 11.49) and 7.80 (2.84 to 12.76) ng/ml respectively. GSK588045 dose dependently blocked the signal of the PET ligand [(11)C]WAY100635, confirming its brain entry and occupancy of 5-HT1A receptors in the primate brain. The estimated EC50 at the post-synaptic heteroreceptors and somatodendritic autoreceptors is similar. 5-HT1 receptor blockade by compounds such as GSK588045 may provide a faster alternate mechanism of antidepressant and anxiolytic action than standard SSRI treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app