JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling.

Differentiation of cardiac fibroblasts (CFs) into myofibroblasts represents a key event in cardiac fibrosis that contributes to pathologic cardiac remodeling. However, regulation of this phenotypic transformation remains elusive. Here, we show that sirtuin-6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent histone deacetylase, plays a role in the regulation of myofibroblast differentiation. SIRT6 expression was upregulated under pathologic conditions in angiotensin II (Ang II)-stimulated CFs and in myocardium of rat subjected to abdominal aortic constriction surgery. SIRT6 depletion by RNA interference (small interfering RNA [siRNA]) in CFs resulted in increased cell proliferation and extracellular matrix deposition. Further examination of SIRT6-depleted CFs demonstrated significantly higher expression of α-smooth muscle actin (α-SMA), the classical marker of myofibroblast differentiation, and increased formation of focal adhesions. Notably, SIRT6 depletion further exacerbated Ang II-induced myofibroblast differentiation. Overexpression of SIRT6 restored α-SMA expression in SIRT6-depleted or Ang II-treated CFs. Moreover, SIRT6 depletion induced the DNA binding activity and transcriptional activity of nuclear factor κB (NF-κB). Importantly, using an NF-κB p65 siRNA or pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB activity, reversed the expression of phenotypic markers of myofibroblasts. Our findings unravel a novel role of SIRT6 as a key modulator in the phenotypic conversion of CFs to myofibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app