JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sequence-dependent antiproliferative effects of gefitinib and docetaxel on non-small cell lung cancer (NSCLC) cells and the possible mechanism.

PURPOSE: Recent clinical trials showed that the sequential combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy could prolong the PFS and/or OS of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. The aim of present study was to assess the optimal combination sequence and to explore its possible mechanism.

METHODS: PC-9 cells and A549 cells, the lung adenocarcinoma cells with mutant and wide-type EGFR respectively, were treated with docetaxel/gefitinib alone or in different combination schedules. The EGFR and K-ras gene status was determined by qPCR-HRM technique. Cell proliferation was detected by MTT assay. The expression and phosphorylation of EGFR, ERK, Akt and IGF-1R were detected by western blot. Cell cycle distribution was observed by flow cytometry.

RESULTS: Only sequential administration of docetaxel followed by gefitinib (D → G) induced significant synergistic effect in both cell lines (Combination Index<0.9). The reverse sequence (G → D) resulted in an antagonistic interaction in both cell lines (CI>1.1), whereas the concurrent administration (D+G) showed additive (0.9
CONCLUSIONS: The cytotoxic drugs followed by EGFR-TKIs may be the optimal combination for antiproliferative effects in EGFR-mutant NSCLC cells, and the phosphorylation of EGFR and ERK might contribute to this effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app