JOURNAL ARTICLE

Rapid regulation of the plasma membrane H⁺-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

Jayakumar Bose, Ana Rodrigo-Moreno, Diwen Lai, Yanjie Xie, Wenbiao Shen, Sergey Shabala
Annals of Botany 2015, 115 (3): 481-94
25471095

BACKGROUND AND AIMS: The activity of H(+)-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na(+) exclusion via Na(+)/H(+) exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H(+)-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed.

METHODS: The kinetics of salt-induced net H(+), Na(+) and K(+) fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots.

KEY RESULTS: Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (-144 ± 3·3, -138 ± 5·4 and -128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H(+) efflux, Na(+) efflux and K(+) retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H(+) efflux was most pronounced in the root elongation zone. In contrast, H(+)-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa.

CONCLUSIONS: Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant's ability to rapidly upregulate plasma membrane H(+)-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to exclude Na(+), or enable better K(+) retention in the cytosol under saline conditions.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25471095
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"