Add like
Add dislike
Add to saved papers

Recent advances in understanding the role of oxidative stress in diabetic neuropathy.

Diabetic neuropathy (DN) is one of the most common and severe manifestations of diabetes mellitus. The mechanisms underlying the structural, functional and metabolic changes in diabetic neuropathy have been under study for a long time. In this review the biochemistry and implications of the four pathways responsible for the development of DN, polyol pathway; increased AGEs (advanced glycation end-products) formation; activation of PKC (protein kinase C) and hexosamine pathway have been discussed. Experimental and clinical evidences suggest a close link between neurodegeneration and oxidative stress which serves as a unifying mechanism, thus linking the four pathways. Recent studies indicate that oxidative stress mediated DNA damage causes poly(ADP-ribose) polymerase (PARP) overactivation and reduced activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a factor common to all the four pathways. The exact mechanism of PARP mediated cell death in DN needs further investigation. Based on current studies neuroprotective and antioxidant therapy have been suggested as potential treatment and preventive solutions for DN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app