JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy.

PURPOSE OF REVIEW: Renal hyperfiltration has been used as a surrogate marker for increased intraglomerular pressure in patients with diabetes mellitus. Previous human investigation examining the pathogenesis of hyperfiltration has focused on the role of neurohormones such as the renin-angiotensin-aldosterone system (RAAS). Unfortunately, RAAS blockade does not completely attenuate hyperfiltration or diabetic kidney injury. More recent work has therefore investigated the contribution of renal tubular factors, including the sodium-glucose cotransporter, to the hyperfiltration state, which is the topic of this review.

RECENT FINDINGS: Novel sodium-glucose cotransporter-2 (SGLT2) inhibitors reduce proximal tubular sodium reabsorption, thereby increasing distal sodium delivery to the macula densa, causing tubuloglomerular feedback, afferent vasoconstriction and decreased hyperfiltration in animals. In humans, SGLT2 inhibition was recently shown to reduce hyperfiltration in normotensive, normoalbuminuric patients with type 1 diabetes. In clinical trials of type 2 diabetes, SGLT2 is associated with significant renal effects, including modest, acute declines in estimated glomerular filtration rate followed by the maintenance of stable renal function, and reduced albuminuria.

SUMMARY: Existing data are supportive of a potential renal-protective role for SGLT2 inhibition in patients with diabetes. Dedicated renal outcome trials are ongoing and have the potential to change the clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app