Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Binding of human proteins to amyloid-β protofibrils.

ACS Chemical Biology 2015 March 21
The progressive neurodegeneration in Alzheimer's disease is believed to be linked to the presence of prefibrillar aggregates of the amyloid-β (Aβ) peptide in the brain. The exact role of these aggregates in the disease pathology is, however, still an open question. Any mechanism by which oligomeric Aβ may cause damage to neuronal cells must, in one way or another, involve interactions with other molecules. Here, we identify proteins in human serum and cerebrospinal fluid that bind to stable protofibrils formed by an engineered variant of Aβ42 (Aβ42CC). We find that the protofibrils attract a substantial number of protein binding partners. Many of the 101 identified proteins are involved in lipid transport and metabolism, the complement system, or in hemostasis. Binding of representative proteins from all of these groups with micromolar affinity was confirmed using surface plasmon resonance. In addition, binding of apolipoprotein E to the protofibrils with nanomolar affinity was demonstrated. We also find that aggregation of Aβ enhances protein binding, as lower amounts of proteins bind monomeric Aβ. Proteins that bind to Aβ protofibrils might contribute to biological effects in which these aggregates are involved. Our results therefore suggest that an improved understanding of the mechanisms by which Aβ causes cytotoxicity and neurodegeneration might be gained from studies carried out in biologically relevant matrices in which Aβ-binding proteins are present.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app