JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system.

Fenton and Fenton-like oxidation has been already demonstrated to be efficient for the degradation of imidazolium ionic liquids (ILs), but little is known for their degradation pathway and kinetics in such systems. In this work, degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides ([Cnmim]Br, n=2, 4, 6, 8, and 10) were investigated in an ultrasound nanoscale zero-valent iron/hydrogen peroxide (US-nZVI/H2O2) system. For this purpose, 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as a representative ionic liquid to optimize pH value, nZVI dose, and H2O2 concentration for the degradation reaction. Then, the degradation kinetics of [Cnmim]Br was investigated under optimal conditions, and their degradation intermediates were monitored by gas chromatography-mass spectrometry (GC-MS). It was shown that the degradation of [Cnmim]Br in such a heterogeneous Fenton-like system could be described by a second order kinetic model, and a number of intermediate products were detected. Based on these intermediate products, detailed pathways were proposed for the degradation of [Cnmim]Br in the ultrasound-assisted nZVI/H2O2 system. These findings may be useful for the better understanding of degradation mechanism of the imidazolium ILs in aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app