JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An essential role of NAD(P)H oxidase 2 in UVA-induced calcium oscillations in mast cells.

Solar UVA radiation (320-400 nm) is known to have immunomodulatory effects, but the detailed mechanisms involved are not fully elucidated. UVA irradiation has been shown to induce calcium oscillations in rat peritoneal mast cells due to NAD(P)H oxidase (NOX) activation, but the specific NOX isoforms have not been identified. In the present work effects of UVA irradiation were investigated in isolated rat peritoneal mast cells, in cultured rat mast cell line RBL-2H3, and in mouse bone marrow-derived mast cells (BMMC). It was found that UVA irradiation by alternate 340/380 nm (3.2-5.6 μW cm(-2)) or by LED (380 nm, 80 μW cm(-2)) induced calcium oscillations in isolated rat peritoneal mast cells, in RBL-2H3, and in BMMC. Such UVA-induced calcium oscillations resembled closely those induced by surface IgE receptor (FcεRI) activation. It was found that RBL-2H3 expressed high levels of gp91(phox) (NOX2), p22(phox), p67(phox), p47(phox), p40(phox), Rac1, Rac2, moderate levels of DUOX2, but did not express NOX1, NOX3, NOX4, or DUOX1. The specific cellular localizations of gp91(phox) (NOX2), p22(phox), p47(phox), p67(phox), p40(phox) and Rac1/2 were confirmed by immunocytochemistry. UVA-induced reactive oxygen species (ROS) production in RBL-2H3 was completely suppressed by the NOX inhibitor diphenyleneiodonium chloride (DPI) or by the antioxidant N-acetyl-l-cysteine (NAC). siRNA suppression of gp91(phox) (NOX2), p22(phox) and p47(phox) expression inhibited markedly UVA-induced calcium oscillations, ROS and IL-6/LTC4 production in RBL-2H3. Taken together these data indicate that NOX2 plays an essential role in UVA irradiation-induced calcium oscillations, ROS and mediator production in mast cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app