Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phenotypic characterization and anti-tumor effects of cytokine-induced killer cells derived from cord blood.

Cytotherapy 2015 January
BACKGROUND AIMS: Cytokine-induced killer (CIK) cell therapy represents a feasible immunotherapeutic option for treating malignancies. However, the number of anti-tumor lymphocytes cannot be easily obtained from the cancer patients with poor immunity status, and older patients cannot tolerate repeated collection of blood. Cord blood-derived CIK (CB-CIK) cells have shown efficacy in treating the patients with cancer in several clinical trials. This study was conducted to evaluate the biological characteristics and anti-tumor function of CB-CIK cells.

METHODS: The immunogenicity, chemokine receptors and proliferation of CB-CIK cells were analyzed by flow cytometry. The CIK cells on day 13 were treated with cisplatin and the anti-apoptosis capacity was analyzed. The function of CB-CIK cells against the human cancer was evaluated both in vitro and in vivo.

RESULTS: Compared with peripheral blood-derived CIK (PB-CIK) cells, CB-CIK cells demonstrated lower immunogenicity and increased proliferation rates. CB-CIK cells also had a higher percentage of main functional fraction CD3(+)CD56(+). The anti-apoptosis ability of CB-CIK cells after treatment with cisplatin was higher than that of PB-CIK cells. Furthermore, CB-CIK cells were effective for secreting interleukin-2 and interferon-γ and a higher percentage of chemokine receptors CCR6 and CCR7. In addition, tumor growth was greatly inhibited by CB-CIK treatment in a nude mouse xenograft model.

CONCLUSIONS: CB-CIK cells exhibit more efficient anti-tumor activity in in vitro analysis and in the preclinical model and may serve as a potential therapeutic approach for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app