Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.

Antigen presenting cells (APC) are critical for regulating immune responses. We tested mannan-peptide conjugates for targeting myelin peptides to APC to induce T cell tolerance and resistance to experimental autoimmune encephalomyelitis (EAE). Myelin peptides conjugated to mannan in oxidized (OM) or reduced (RM) forms protected mice against EAE in prophylactic and therapeutic protocols, with OM-conjugated peptides giving best results. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation, but not alterations in Th1, Th17 and Treg cell differentiation or T cell apoptosis compared to EAE controls. Bone marrow-derived dendritic cells (DC) loaded with OM-MOG showed up-regulated expression of co-stimulatory molecules, reduced PD-L1 expression and enhanced CD40-inducible IL-12 and IL-23 production compared to MOG DC, features consistent with immunogenic DC. OM-MOG induced active T cell tolerance because i.d. administration or passive transfer of OM-MOG DC suppressed ongoing EAE, while OM-MOG-vaccinated mice did not reduce the proliferation of transferred MOG-specific T cells. As in vivo, MOG-specific T cells cultured with OM-MOG DC showed reduced proliferation and equal Th1 and Th17 cell differentiation compared to those with MOG DC, but surprisingly cytokine production was unresponsive to CD40 engagement. Impaired effector T cell function was further evidenced in spinal cord sections from OM-MOG-vaccinated EAE mice, where markedly reduced numbers of CD3(+) T cells were present, restricted to leptomeninges and exceptional parenchymal lesions. Our results show that mannan-conjugated myelin peptides protect mice against EAE through the expansion of antigen-specific Th1 and Th17 cells with impaired proliferation responses and APC-induced co-stimulatory signals that are required for licensing them to become fully pathogenic T cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app