RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats.

The study aims to statistically develop a microemulsion system of an antifungal agent, itraconazole for overcoming the shortcomings and adverse effects of currently used therapies. Following preformulation studies like solubility determination, component selection and pseudoternary phase diagram construction, a 3-factor D-optimal mixture design was used for optimizing a microemulsion having desirable formulation characteristics. The factors studied for sixteen experimental trials were percent contents (w/w) of water, oil and surfactant, whereas the responses investigated were globule size, transmittance, drug skin retention and drug skin permeation in 6h. Optimized microemulsion (OPT-ME) was incorporated in Carbopol based hydrogel to improve topical applicability. Physical characterization of the formulations was performed using particle size analysis, transmission electron microscopy, texture analysis and rheology behavior. Ex vivo studies carried out in Wistar rat skin depicted that the optimized formulation enhanced drug skin retention and permeation in 6h in comparison to conventional cream and Capmul 908P oil solution of itraconazole. The in vivo evaluation of optimized formulation was performed using a standardized Tinea pedis model in Wistar rats and the results of the pharmacodynamic study, obtained in terms of physical manifestations, fungal-burden score, histopathological profiles and oxidative stress. Rapid remission of Tinea pedis from rats treated with OPT-ME formulation was observed in comparison to commercially available therapies (ketoconazole cream and oral itraconazole solution), thereby indicating the superiority of microemulsion hydrogel formulation over conventional approaches for treating superficial fungal infections. The formulation was stable for a period of twelve months under refrigeration and ambient temperature conditions. All results, therefore, suggest that the OPT-ME can prove to be a promising and rapid alternative to conventional antifungal therapies against superficial fungal infections.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app