Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system.

Obesity is a leading contributor to morbidity and mortality worldwide. Chronic overnutrition and lack of physical activity result in excess deposition of adipose tissue and insulin resistance, which plays a key role in the pathophysiology of type 2 diabetes mellitus (DM2) and associated cardiovascular disease (CVD). Dysfunctional adipose tissue in obese individuals is characterized by chronic low-grade inflammation that spreads to several tissues as well as systemically and is able to impact the cardiovascular system, resulting in both functional and anatomical abnormalities. Inflammation is characterized by abnormalities in both innate and adaptive immunity including adipose tissue infiltration by CD4+ T lymphocytes, pro-inflammatory (M1) macrophages, and increased production of adipokines. The renin-angiotensin-aldosterone system (RAAS) is inappropriately activated in adipose tissue and contributes to originating and perpetuating inflammation and excessive oxidative stress by increasing production of reactive oxygen species (ROS). In turn, ROS and pro-inflammatory adipokines cause resistance to the metabolic actions of insulin in several tissues including cardiovascular and adipose tissue. Insulin resistance in cardiovascular tissues is characterized by impaired vascular reactivity and abnormal cardiac contractility as well as hypertrophy, fibrosis, and remodeling, which ultimately result in CVD. In this context, weight loss through caloric restriction, regular physical activity, and surgery as well as pharmacologic RAAS blockade all play a key role in reducing obesity-related cardiovascular morbidity and mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app