JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells.

Cell Death & Disease 2014 November 28
F1Fo ATP synthase is present in all organisms and is predominantly located on the inner membrane of mitochondria in eukaryotic cells. The present study demonstrated that ATP synthase and electron transport chain complexes were ectopically expressed on the surface of breast cancer cells and could serve as a potent anticancer target. We investigated the anticancer effects of the ATP synthase inhibitor citreoviridin on breast cancer cells through proteomic approaches and revealed that differentially expressed proteins in cell cycle regulation and in the unfolded protein response were functionally enriched. We showed that citreoviridin triggered PERK-mediated eIF2α phosphorylation, which in turn attenuated general protein synthesis and led to cell cycle arrest in the G0/G1 phase. We further showed that the combination of citreoviridin and the 26S proteasome inhibitor bortezomib could improve the anticancer activity by enhancing ER stress, by ameliorating citreoviridin-caused cyclin D3 compensation, and by contributing to CDK1 deactivation and PCNA downregulation. More interestingly, the combined treatment triggered lethality through unusual non-apoptotic caspase- and autophagy-independent cell death with a cytoplasmic vacuolization phenotype. The results imply that by boosting ER stress, the combination of ATP synthase inhibitor citreoviridin and 26S proteasome inhibitor bortezomib could potentially be an effective therapeutic strategy against breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app